欧美三级日本三级少妇99_黄片毛片一级_毛片免费在线观看_日本一区视频在线播放_欧美黄色视屏_亚洲视频高清

期刊 科普 SCI期刊 投稿技巧 學術 出書 購物車

首頁 > 優秀范文 > 現代電力電子技術

現代電力電子技術樣例十一篇

時間:2023-09-20 10:37:38

序論:速發表網結合其深厚的文秘經驗,特別為您篩選了11篇現代電力電子技術范文。如果您需要更多原創資料,歡迎隨時與我們的客服老師聯系,希望您能從中汲取靈感和知識!

現代電力電子技術

篇1

現代電力電子技術的發展方向,是從以低頻技術處理問題為主的傳統電力電子學,向以高頻技術處理問題為主的現代電力電子學方向轉變。電力電子技術起始于五十年代末六十年代初的硅整流器件,其發展先后經歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術在許多新領域的應用。八十年代末期和九十年代初期發展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導體復合器件,表明傳統電力電子技術已經進入現代電力電子時代。

1、整流器時代

大功率的工業用電由工頻(50Hz)交流發電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變為直流電,因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發與應用得以很大發展。當時國內曾經掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導體廠家就是那時的產物。

2、逆變器時代

七十年代出現了世界范圍的能源危機,交流電機變頻惆速因節能效果顯著而迅速發展。變頻調速的關鍵技術是將直流電逆變為0~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態補償等。這時的電力電子技術已經能夠實現整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。

3、變頻器時代

進入八十年代,大規模和超大規模集成電路技術的迅猛發展,為現代電力電子技術的發展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發展,而后絕緣門極雙極晶體管(IGBT)的出現,又為大中型功率電源向高頻發展帶來機遇。MOSFET和IGBT的相繼問世,是傳統的電力電子向現代電力電子轉化的標志。據統計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現代電子技術不斷向高頻化發展,為用電設備的高效節材節能,實現小型輕量化,機電一體化和智能化提供了重要的技術基礎。

二、電力電子技術的應用

1、一般工業

工業中大量應用各種交直流電動機。直流電動機有良好的調速性能,給其供電的可控整流電源或直流斬波電源都是電力電子裝置。近年來,由于電力電子變頻技術的迅速發展,使得交流電機的調速性能可與直流電機相媲美,交流調速技術大量應用并占據主導地位。大至數千kW的各種軋鋼機,小到幾百W的數控機床的伺服電機,以及礦山牽引等場合都廣泛采用電力電子交直流調速技術。一些對調速性能要求不高的大型鼓風機等近年來也采用了變頻裝置,以達到節能的目的。還有些不調速的電機為了避免起動時的電流沖擊而采用了軟起動裝置,這種軟起動裝置也是電力電子裝置。電化學工業大量使用直流電源,電解鋁、電解食鹽水等都需要大容量整流電源。電鍍裝置也需要整流電源。電力電子技術還大量用于冶金工業中的高頻、中頻感應加熱電源、淬火電源及直流電弧爐電源等場合。

2、交通運輸

電氣化鐵道中廣泛采用電力電子技術。電氣機車中的直流機車中采用整流裝置,交流機車采用變頻裝置。直流斬波器也廣泛用于鐵道車輛。在未來的磁懸浮列車中,電力電子技術更是一項關鍵技術。除牽引電機傳動外,車輛中的各種輔助電源也都離不開電力電子技術。電動汽車的電機靠電力電子裝置進行電力變換和驅動控制,其蓄電池的充電也離不開電力電子裝置。一臺高級汽車中需要許多控制電機,它們也要靠變頻器和斬波器驅動并控制。飛機、船舶需要很多不同要求的電源,因此航空和航海都離不開電力電子技術。如果把電梯也算做交通運輸,那么它也需要電力電子技術。以前的電梯大都采用直流調速系統,而近年來交流變頻調速已成為主流。3、電力系統

電力電子技術在電力系統中有著非常廣泛的應用。據估計,發達國家在用戶最終使用的電能中,有60%以上的電能至少經過一次以上電力電子變流裝置的處理。電力系統在通向現代化的進程中,電力電子技術是關鍵技術之一。可以毫不夸張地說,如果離開電力電子技術,電力系統的現代化就是不可想象的。直流輸電在長距離、大容量輸電時有很大的優勢,其送電端的整流閥和受電端的逆變閥都采用晶閘管變流裝置。近年發展起來的柔流輸電(FACTS)也是依靠電力電子裝置才得以實現的。無功補償和諧波抑制對電力系統有重要的意義。晶閘管控制電抗器(TCR)、晶閘管投切電容器(TSC)都是重要的無功補償裝置。近年來出現的靜止無功發生器(SVG)、有源電力濾波器(APF)等新型電力電子裝置具有更為優越的無功功率和諧波補償的性能。在配電網系統,電力電子裝置還可用于防止電網瞬時停電、瞬時電壓跌落、閃變等,以進行電能質量控制,改善供電質量。

在變電所中,給操作系統提供可靠的交直流操作電源,給蓄電池充電等都需要電力電子裝置。

4、電子裝置用電源

各種電子裝置一般都需要不同電壓等級的直流電源供電。通信設備中的程控交換機所用的直流電源以前用晶閘管整流電源,現在已改為采用全控型器件的高頻開關電源。大型計算機所需的工作電源、微型計算機內部的電源現在也都采用高頻開關電源。在各種電子裝置中,以前大量采用線性穩壓電源供電,由于高頻開關電源體積小、重量輕、效率高,現在已逐漸取代了線性電源。因為各種信息技術裝置都需要電力電子裝置提供電源,所以可以說信息電子技術離不開電力電子技術。

5、家用電器

照明在家用電器中占有十分突出的地位。由于電力電子照明電源體積小、發光效率高、可節省大量能源,通常被稱為“節能燈”,它正在逐步取代傳統的白熾燈和日光燈。變頻空調器是家用電器中應用電力電子技術的典型例子。電視機、音響設備、家用計算機等電子設備的電源部分也都需要電力電子技術。此外,有些洗衣機、電冰箱、微波爐等電器也應用了電力電子技術。電力電子技術廣泛用于家用電器使得它和我們的生活變得十分貼近。

篇2

一、電力電子技術的發展

1957年美國通用電氣公司研制出了第一個晶閘管,標志著電力電子技術的誕生。而1958年以集成電路的誕生為標志的微電子技術帶動了一系列高新技術產業的發展,標志著第一次電子技術革命的開始。現代電力電子技術的發展方向,是從以低頻技術處理問題為主的傳統電力電子學,向以高頻技術處理問題為主的現代電力電子學方向轉變。電力電子器件按照能被控制電路信號所控制的程度分為不可控器件、半控型器件和全控型器件。不可控器件主要指電力二極管、該二極管雖不可控,可因為結構簡單,使用方便成本低,仍被廣泛應用。半控型器件主要指晶閘管,由它所組成的電路靈活成熟、開關損耗小、開關時間短,在電源、通用逆變器、電機控制等電路中應用廣泛。但驅動電流大、耐浪涌電流能力差、容易受二次擊穿。以電子技術和微電子技術的發展為背景,全控型器件是在八十年代末期和九十年代初期發展起來了,主要有電力晶體管(GTR)、電力場效應晶體管(電力MOSFET)、絕緣柵雙極晶體管(IGBT)。其特點是集高頻、高壓和大電流于一身,是大型的功率半導體復合器件,全控型器件的誕生表明傳統電力電子技術已經進入現代電力電子時代。

二、現代電力電子的應用領域

(一)電力系統及節能方面

電力電子技術在電力系統領域中的應用著非常廣泛和重要,在發電通過改變設備的運行特性為主要目的;而電子技術在高壓輸電領域的應用,極大的提高了電網運行的穩定性,被稱為“硅片引起的第”;在配電領域,則通過電力電子裝置來防止電網瞬間停電、瞬間電壓跌落、閃變等,以進行電能質量控制,加強供電可靠性,改善供電質量。同時還通過減少無功損耗,提高功率指數,來達到節能的目的。在發達國家有60%以上的電能至少經過一次以上的電力電子變流裝置進行處理。通過這種處理可以節約能源和提高用電設備的性能。直流輸電在長距離、大容量輸電中有很大的優勢,其送電端的整流閥和受電端的逆變閥都使用晶閘管變流裝置。

(二)交通運輸

電子技術在鐵路運輸、船舶、航天、電動汽車等行業都有廣泛的應用,稱為新興產業不可缺少的重要技術。新型環保綠色電動汽車與混合動力電動汽車都正在積極的發展中。汽車是靠汽油引擎的運行發展起來的一種機械,它排出大量的二氧化碳與其他廢氣,嚴重污染了環境。而綠色電動汽車的電機用蓄電池為能源,靠電力電子裝置來進行電力變換與驅動控制,其蓄電池的充電也是離不開電力電子技術的。顯然,未來電動汽車大有可能取代燃油汽車。。而在電氣機車中的直流機車就是采用整流裝置來供電的,而交流機車則采用變頻裝置來供電,都離不開電子技術的應用,直流折波器和鐵道車輛、磁懸浮列車中的電力電子技術更是關鍵技術的應用實例。船舶、飛機也需要各種不同要求的電源,所以航海、航空都離不開電力電子技術。

(三)開關電源

首先高速發展的計算機技術在帶領人類進入了信息社會的同時,也促進了電源技術的迅速發展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進入了電子、電器設備領域。開關電源和線性電源相比,二者的成本都隨著輸出功率的增加而增長,但二者增長速率各異。線性電源成本在某一輸出功率點上,反而高于開關電源。隨著電力電子技術的發展和創新,使得開關電源技術在不斷地創新,這一成本反轉點日益向低輸出電力端移動,這為開關電源提供了廣泛的發展空間。高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50-100kHz范圍內,實現高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。開關電源的發展方向是高頻、高可靠、低耗、低噪聲、抗干擾和模塊化,關鍵技術是高頻化。由于開關電源輕、小、薄的特點,其應用日益廣泛。現在開關電源產品廣泛應用于工業自動化控制、軍工設備、科研設備、LED照明、工控設備、通訊設備、電力設備、儀器儀表、醫療設備、半導體制冷制熱、空氣凈化器,電子冰箱,液晶顯示器,LED燈具,通訊設備,視聽產品,安防監控,LED燈袋,電腦機箱,數碼產品和儀器類等領域。

(四)不間斷電源(UPS)

電子技術帶給計算機領域的還有不間斷電源技術。所謂不間斷電源(UPS)是指計算機、通信系統以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經逆變器變成交流,經轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現。目前在線式UPS的最大容量已可作到600kVA。超小型UPS發展也很迅速,已經有0.5kVA、lkVA、2kVA、3kVA等多種規格的產品。

三、總結

90年代以后,電子技術朝著大功率化、模塊化、變頻化和智能化發展。電化學專業、鐵道電氣車、鋼鐵工業、電力工業的迅速發展給電力電子器件提供了用武之地。通過電子技術和微電子技術的結合,促成了功率集成電路的誕生,最終促使了大量新結構、新材料器件等電子器件的誕生和發展,給工業、航天等帶來了極大的幫助和便利,對節約能源、改造傳統產業、發展新型產業作出了巨大的貢獻。總而言之,電力電子因應用需求不斷向前發展,新技術的出現又會使許多應用產品更新換代,還會開拓更多更新的應用領域。

參考文獻:

[1]周明寶.電力電子技術[M].北京:機制工業出版社,1985.

[2]陳國呈,周勤利.變頻技術研究[J].上海大學自動化學院學報,1995(6):23-26.

篇3

現代電源技術是應用電力電子半導體器件,綜合自動控制、計算機(微處理器)技術和電磁技術的多學科邊緣交又技術。在各種高質量、高效、高可靠性的電源中起關鍵作用,是現代電力電子技術的具體應用。

當前,電力電子作為節能、節才、自動化、智能化、機電一體化的基礎,正朝著應用技術高頻化、硬件結構模塊化、產品性能綠色化的方向發展。在不遠的將來,電力電子技術將使電源技術更加成熟、經濟、實用,實現高效率和高品質用電相結合。

1.電力電子技術的發展

現代電力電子技術的發展方向,是從以低頻技術處理問題為主的傳統電力電子學,向以高頻技術處理問題為主的現代電力電子學方向轉變。電力電子技術起始于五十年代末六十年代初的硅整流器件,其發展先后經歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術在許多新領域的應用。八十年代末期和九十年代初期發展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導體復合器件,表明傳統電力電子技術已經進入現代電力電子時代。

1.1整流器時代

大功率的工業用電由工頻(50Hz)交流發電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變為直流電,因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發與應用得以很大發展。當時國內曾經掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導體廠家就是那時的產物。

1.2逆變器時代

七十年代出現了世界范圍的能源危機,交流電機變頻惆速因節能效果顯著而迅速發展。變頻調速的關鍵技術是將直流電逆變為0~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態補償等。這時的電力電子技術已經能夠實現整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。

1.3變頻器時代

進入八十年代,大規模和超大規模集成電路技術的迅猛發展,為現代電力電子技術的發展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發展,而后絕緣門極雙極晶體管(IGBT)的出現,又為大中型功率電源向高頻發展帶來機遇。MOSFET和IGBT的相繼問世,是傳統的電力電子向現代電力電子轉化的標志。據統計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現代電子技術不斷向高頻化發展,為用電設備的高效節材節能,實現小型輕量化,機電一體化和智能化提供了重要的技術基礎。

2.現代電力電子的應用領域

2.1計算機高效率綠色電源

高速發展的計算機技術帶領人類進入了信息社會,同時也促進了電源技術的迅速發展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進人了電子、電器設備領域。

計算機技術的發展,提出綠色電腦和綠色電源。綠色電腦泛指對環境無害的個人電腦和相關產品,綠色電源系指與綠色電腦相關的高效省電電源,根據美國環境保護署l992年6月17日"能源之星"計劃規定,桌上型個人電腦或相關的設備,在睡眠狀態下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。

2.2通信用高頻開關電源

通信業的迅速發展極大的推動了通信電源的發展。高頻小型化的開關電源及其技術已成為現代通信供電系統的主流。在通信領域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統的相控式穩壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50-100kHz范圍內,實現高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。

因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

2.3直流-直流(DC/DC)變換器

DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩、快速響應的性能,并同時收到節約電能的效果。用直流斬波器代替變阻器可節約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源),同時還能起到有效地抑制電網側諧波電流噪聲的作用。

通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規模集成電路的發展,要求電源模塊實現小型化,因此就要不斷提高開關頻率和采用新的電路拓撲結構,目前已有一些公司研制生產了采用零電流開關和零電壓開關技術的二次電源模塊,功率密度有較大幅度的提高。

2.4不間斷電源(UPS)

不間斷電源(UPS)是計算機、通信系統以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經逆變器變成交流,經轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現。

現代UPS普遍了采用脈寬調制技術和功率M0SFET、IGBT等現代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術的引入,可以實現對UPS的智能化管理,進行遠程維護和遠程診斷。目前在線式UPS的最大容量已可作到600kVA。超小型UPS發展也很迅速,已經有0.5kVA、lkVA、2kVA、3kVA等多種規格的產品。

2.5變頻器電源

變頻器電源主要用于交流電機的變頻調速,其在電氣傳動系統中占據的地位日趨重要,已獲得巨大的節能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅動交流異步電動機實現無級調速。

國際上400kVA以下的變頻器電源系列產品已經問世。八十年代初期,日本東芝公司最先將交流變頻調速技術應用于空調器中。至1997年,其占有率已達到日本家用空調的70%以上。變頻空調具有舒適、節能等優點。國內于90年代初期開始研究變頻空調,96年引進生產線生產變頻空調器,逐漸形成變頻空調開發生產熱點。預計到2000年左右將形成。變頻空調除了變頻電源外,還要求有適合于變頻調速的壓縮機電機。優化控制策略,精選功能組件,是空調變頻電源研制的進一步發展方向。

2.6高頻逆變式整流焊機電源

高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應用前景。

逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經高頻變壓器耦合,整流濾波后成為穩定的直流,供電弧使用。

由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。采用微處理器做為脈沖寬度調制(PWM)的相關控制器,通過對多參數、多信息的提取與分析,達到預知系統各種工作狀態的目的,進而提前對系統做出調整和處理,解決了目前大功率IGBT逆變電源可靠性。

國外逆變焊機已可做到額定焊接電流300A,負載持續率60%,全載電壓60~75V,電流調節范圍5~300A,重量29kg。

2.7大功率開關型高壓直流電源

大功率開關型高壓直流電源廣泛應用于靜電除塵、水質改良、醫用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。

自從70年代開始,日本的一些公司開始采用逆變技術,將市電整流后逆變為3kHz左右的中頻,然后升壓。進入80年代,高頻開關電源技術迅速發展。德國西門子公司采用功率晶體管做主開關元件,將電源的開關頻率提高到20kHz以上。并將干式變壓器技術成功的應用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統的體積進一步減小。

國內對靜電除塵高壓直流電源進行了研制,市電經整流變為直流,采用全橋零電流開關串聯諧振逆變電路將直流電壓逆變為高頻電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。

2.8電力有源濾波器

傳統的交流-直流(AC-DC)變換器在投運時,將向電網注入大量的諧波電流,引起諧波損耗和干擾,同時還出現裝置網側功率因數惡化的現象,即所謂"電力公害",例如,不可控整流加電容濾波時,網側三次諧波含量可達(70~80)%,網側功率因數僅有0.5~0.6。

電力有源濾波器是一種能夠動態抑制諧波的新型電力電子裝置,能克服傳統LC濾波器的不足,是一種很有發展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統開關電源的區別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環基準信號為電壓環誤差信號與全波整流電壓取樣信號之乘積。

2.9分布式開關電源供電系統

分布式電源供電系統采用小功率模塊和大規模控制集成電路作基本部件,利用最新理論和技術成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產效率。

八十年代初期,對分布式高頻開關電源系統的研究基本集中在變換器并聯技術的研究上。八十年代中后期,隨著高頻功率變換技術的迅述發展,各種變換器拓撲結構相繼出現,結合大規模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學界的研究熱點,論文數量逐年增加,應用領域不斷擴大。

分布供電方式具有節能、可靠、高效、經濟和維護方便等優點。已被大型計算機、通信設備、航空航天、工業控制等系統逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。

3.高頻開關電源的發展趨勢

在電力電子技術的應用及各種電源系統中,開關電源技術均處于核心地位。對于大型電解電鍍電源,傳統的電路非常龐大而笨重,如果采用高頓開關電源技術,其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關電源技術,通過開關電源改變用電頻率,從而達到近于理想的負載匹配和驅動控制。高頻開關電源技術,更是各種大功率開關電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術。

3.1高頻化

理論分析和實踐經驗表明,電氣產品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設備的體積重量大體下降至工頻設計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關式整流器,都是基于這一原理。同樣,傳統"整流行業"的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據這一原理進行改造,成為"開關變換類電源",其主要材料可以節約90%或更高,還可節電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統高頻設備固態化,帶來顯著節能、節水、節約材料的經濟效益,更可體現技術含量的價值。

3.2模塊化

模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關器件和與之反并聯的續流二極管,實質上都屬于"標準"功率模塊(SPM)。近年,有些公司把開關器件的驅動保護電路也裝到功率模塊中去,構成了"智能化"功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應力(表現為過電壓、過電流毛刺)。為了提高系統的可靠性,有些制造商開發了"用戶專用"功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統的引線連接,這樣的模塊經過嚴格、合理的熱、電、機械方面的設計,達到優化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應的散熱器上,就構成一臺新型的開關電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統連線,把寄生參數降到最小,從而把器件承受的電應力降至最低,提高系統的可靠性。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統來說功率很小的冗余電源模塊,極大的提高系統可靠性,即使萬一出現單模塊故障,也不會影響系統的正常工作,而且為修復提供充分的時間。3.3數字化

在傳統功率電子技術中,控制部分是按模擬信號來設計和工作的。在六、七十年代,電力電子技術擬電路基礎上的。但是,現在數字式信號、數字電路顯得越來越重要,數字信號處理技術日趨完善成熟,顯示出越來越多的優點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調試和遙感遙測遙調,也便于自診斷、容錯等技術的植入。所以,在八、九十年代,對于各類電路和系統的設計來說,模擬技術還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數修正(PFC)等問題的解決,離不開模擬技術的知識,但是對于智能化的開關電源,需要用計算機控制時,數字化技術就離不開了。

3.4綠色化

電源系統的綠色化有兩層含義:首先是顯著節電,這意味著發電容量的節約,而發電是造成環境污染的重要原因,所以節電就可以減少對環境的污染;其次這些電源不能(或少)對電網產生污染,國際電工委員會(IEC)對此制定了一系列標準,如IEC555、IEC917、IECl000等。事實上,許多功率電子節電設備,往往會變成對電網的污染源:向電網注入嚴重的高次諧波電流,使總功率因數下降,使電網電壓耦合許多毛刺尖峰,甚至出現缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數的方法。

總而言之,電力電子及開關電源技術因應用需求不斷向前發展,新技術的出現又會使許多應用產品更新換代,還會開拓更多更新的應用領域。開關電源高頻化、模塊化、數字化、綠色化等的實現,將標志著這些技術的成熟,實現高效率用電和高品質用電相結合。這幾年,隨著通信行業的發展,以開關電源技術為核心的通信用開關電源,僅國內有20多億人民幣的市場需求,吸引了國內外一大批科技人員對其進行開發研究。開關電源代替線性電源和相控電源是大勢所趨,因此,同樣具有幾十億產值需求的電力操作電源系統的國內市場正在啟動,并將很快發展起來。還有其它許多以開關電源技術為核心的專用電源、工業電源正在等待著人們去開發。

參考文獻:

篇4

1.現代電力電子技術在煤礦電氣的應用

傳動系統中的應用國際上,技術先進的產煤國家,井下使用現代電力電子技術和裝備已相當廣泛。如調速變頻電牽引采煤機,風機、水泵、提升機等礦用設備調速系統;原不調速系統實現變頻調速;原直流調速系統正被交流變頻調速系統逐步代替。

1.1提高生產工藝流程自動化控制系統智能化水平

電氣傳動自動化技術是以生產機械的驅動裝置—電動機為自動控制對象、以微電子器件(包括微計算機系統)為核心、以電力電子裝置為執行機構,在自動控制理論指導下,按給定的規律控制電動機的轉速進行自動調節,以滿足生產工藝的最佳要求,達到提高效率、降低能耗、提高產品(或系統運行)質量、減少系統環節、降低勞動強度的優化效果。現代變頻裝置的智能化程度比較高,自身具有很強的保護功能,對于被驅動負載來說,它既是一個功能很強的控制環節,又是很準確的電動執行機構。作為電氣傳動自動化系統,可稱得上是控制和執行器的機電一體化環節。采用此項技術和設備,不但可容易地實現較高性能的單機自動化,而且實現礦井的順槽自動化控制要簡單和容易得多。

1.2提高電氣傳動系統的機電一體化水平,減小驅動設備占用空間

電氣傳動系統的機電一體化是現代礦井采、掘、運、提等大型生產裝備機電一體化的最重要組成部分,這不但可有效地提高生產工藝流程自動化控制系統智能化水平,而且可有效地減小設備占用空間。由于井下空間有限,限制了裝備的體積及使用范圍:縮小裝備的體積可以有效地減少恫室開挖量,節約投資。隨著現代電力電子技術的不斷發展和進步,發展無機械齒輪機,技術已日臻成熟,并且已進入實用階段。如:交流主軸驅動系統、滾筒內裝電動機式提升絞車等已投入使用,既減少了機械傳動環節系統體積,又有效地提高了整體的傳動效率,為礦井電氣傳動系統改造提供了誘人的新技術前景。

2.現代電力電子技術在電機調速及拖動中的應用

礦井中電機是耗能大戶,并且集中在提升機電機通風機電機、主排水泵電機、壓縮機電機以及采煤機電機等幾個大型電機上,耗能比較集中,因此為實現電力電子技術改造提供了方便。以TKD和JKMK系列提升機電控系統為主的交流提升電控系統在我國使用最為普遍,這些控制系統都是采用轉子附加電阻來調速的。由于交流提升機在減速段機械特性軟調速性能較差,后來又出現直流調速提升機,由于在開始發展直流控制系統時電力電子技術特別是大功率電力電子元件及控制模塊還不是很成熟,因此這種直流調速方案主要采用F—D系統(直流發電機拖動直流電動機)。這種系統中拖動發電機的電動機除了檢修以外,一般停機,因此電能浪費嚴重,以某礦副井提升機為例:該礦副井提升機采用的是直流F—D直流拖動系統,提升電機的功率是1250kw,為其提供直流電源的是功率為1450kw的直流發電機,拖動發電機的是功率為1600kw的交流同步電動機,在提升機進行電力電子技術改造前每個月的耗電量在40—45萬kw·h之間。除此之外,整個控制系統仍然采用傳統的繼電器控制,所有參數也是模擬量,因此控制復雜、故障率高、參數易變、維護量大,每年的維修費用15萬元左右,維修時間超過500h。該礦于2004年5月對電控系統進行改造,改造成電力電子整流直流調速系統,整套系統采用進口整流控制柜和PLC控制系統。改造后,每月電量消耗在20萬kw·h左右,節能非常明顯,兩年內節約的電費就收回了項目投資。同時控制系統數字化、模塊化,結構緊湊、集成度高、故障率低、維護方便,年維修費用2萬元以下,年維修時間200h左右。節能效果良好,經濟和社會效益明顯。

相對于直流調速系統,交流電機費用低、結構簡單、維護方便,因此受到用戶的青睞,特別是交流電機的變頻調速性能和直流調速基本相似,因此變頻調速的發展速度很快,并且有逐步取代直流調速的趨勢。交流電機采用變頻技術相對直流電機采用直流調速性能基本相似,但是變頻技術相對直流調速方案總體經濟效益較好,這一點在電梯調速方面的成功應用可以得到驗證。

煤炭企業大功率電機直接使用變頻調速的難度在于電機的額定電壓以6kv為主,應用高壓交流電機和高壓變頻調速的方案目前還沒有一個成功應用的例子。隨著變頻技術的進步,具有內置式PID以及張力卷取軟件、速度級鏈速度跟隨以及電流平衡等功能的大功率高壓變頻器技術的成熟。目前的礦用提升機交流電控系統除了調速性能不理想外其轉子串接的加速電阻也消耗部分電能,而且維修量大。

礦用刮板輸送機和帶式輸送機是煤礦生產的重要設備之一,這些設備啟動頻繁,負荷變化大,目前使用的啟動設備大多數采用普通磁力啟動器配液壓聯軸器,啟動效果不很理想,同時也無法達到節能效果。隨著隔爆型變頻器技術的成熟,礦用運輸設備采用變頻器是完全可行的,而且可以同時達到節能和軟啟動的目的。但是隔爆型變頻器造價高,推廣起來有一定的難度,不過現在國內有的企業通過和國外技術合作、引進或自制研制成功了隔爆型節能軟啟動開關,這種開關造價比變頻器低,還可以通過調整輸出電壓來達到節能的目的,在目前條件下,這種開關還是值得推廣的。

3.現代電力電子技術的其它應用

煤炭企業一般距離市區較遠,因此煤礦的工人村都有相對對立的物業管理體系,例如必須具備對立的供水系統。現在大多數礦山工人采用的都是定時供水制,只在規定的時間內供水,供水的時候,就是用水的高峰期,每個用戶還要用容器存一部分水備用,實際上并不一定能用完,長流水的地方也比較多,因此造成水資源和電能的浪費。另外,由于用水集中,為了保證有足夠的水壓,供水的水泵和電機都比較大,因此也造成了設備資源的浪費。全自動無塔變頻供水裝置這項技術在全國推廣使用已經好幾年了,這項技術投資少,自動化程度高,同時還可以達到節水節能的目的,但是在煤炭企業應用還不是太廣泛,還沒有認識到其優勢。某礦工人原來使用的也是定時供水制,自從改造成全動無塔變頻供水以后,節約水資源10%以上,節約電能15%以上,而且還可以保證全天候供水,方便了居民生活,經濟和社會都很好。

篇5

中圖分類號TM1 文獻標識碼A 文章編號 1674-6708(2011)46-0169-02

電子電力技術包括電力電子器件、變流電路和控制電路3部分,是以電力為處理對象并集電力、電子、控制三大電氣工程技術領域之間的綜合性學科。電力技術是一門涉及發電、輸電、配電及電力應用的科學技術,電子技術是一門涉及電子器件和由各種電子電路所組成的電子設備和系統的科學技術,控制技術是指利用外加的設備或裝置使機器設備或生產過程的某個工作狀態或參數按照預定的規律運行。電力電子器件是電力電子技術的基礎,電力電子器件對電能進行控制和轉換就是電子電力技術的利用。在21世紀已經成為一種高新技術,影響著人們生活的各種領域,因此對對電子電力技術的研究具有時代意義。

1 電力電子技術的發展

傳統電力電子技術是以低頻技術處理的,現代電力電子的發展向著高頻技術處理發展。其發展先后經歷了整流器時代、逆變器時代和變頻器時代,在不斷的發展中促進了現代電力電子技術的廣泛應用。電力電子技術在1947年晶體管誕生開始形成,接著1956的晶閘管的出現標志電力電子技術逐漸形成一門學科開始發展,以功率MOS-FET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導體復合器件的出現,表明已經進入現代電子電力技術發展時代。

1.1 整流器時代

在60年代到70年代被稱為電力電子技術的整流時代。該期間主要是大功率硅整流管和晶閘管的開發與應用。1948年的晶體管的出現引發了電子工業革命,半導體器件開始應用與通信領域,1957年,晶閘管的誕生擴展了半導體器件功率控制范圍,屬于第一代電力電子器件。大功率硅整流器能夠高效率地把工頻交流電轉變為直流電,當地辦硅整流器廠逐漸增多,大功率的工業用電由工頻(50Hz)交流發電機提供,其中電解、牽引、和直流傳動是以直流形式消費。

1.2 逆變器時代

20世紀70年到80年代期間成為逆變器時代,該期間的電力電子技術已經能夠實現逆變,但是僅局限在中低頻范圍內。當時變頻調速裝置因為能節能大量普及,巨型功率晶體管(GTR)、門極可關斷晶閘管(GTO)和大功率逆變用的晶閘管成為當時電力電子器件的主流。它們屬于第二代電力電子器件。

1.3 變頻器時代

進入80年代,功率MOSFET和絕緣柵極雙極晶體管(IGBT)的問世,電力電子技術開始向高頻化發展,高壓、高頻和大電流的功率半導體復合器件為第三代電器元件的大規模集成電路技術迅速發展,他們的性能更進一步得到了完善,具有小、輕和高效節能的特點。

1.4 現代電力時代

20世紀以來,電力電子作為自動化、節材、節能、機電一體化、智能化的基礎,正朝著應用技術高頻化、產品性能綠色化、硬件結構模塊化的現代化方向發展。在1995年,功率MOSFET和GTR在功率半導體器件出現并廣泛被人們應用,功率器件和電源單元的模塊化,使用方便,縮小整機體積,器件承受的電應力降至最低,提高系統的可靠性。電子電力技術具有全控化、電路形式弱電化、集成化、高頻化和數字化的特點。更能帶來節能、節省材料和減少污染的經濟效益和生態效益,能控制精度高、避免模擬信號的畸變失真,減小雜散信號的干擾,改善了工作條件。

2 電力電子技術的應用

2.1 工業領域

在工業中,大部分都使用的是交直流電動機。例如數控機床的伺服電機、軋鋼機和礦山牽引、大型鼓風機等等都采用電子交直流技術。在大量的冶金工業中的高頻和中頻感應加熱電源、淬火電源及直流電弧爐電源也大量的采用電力電子技術。在水里電廠蓄能機組中,大型機組工作狀態的調速好改變也采用現代電力電子技術的變流裝置,當負荷降低時,將下游的水抽到水庫,儲存能量,以調節電力系統的供電量。

2.2 交通運輸

交通業的發展也離不開電子電力技術,電氣機車中的交流機車和直流機車分別采用變頻裝置和整流裝置,車輛中的各種輔助電源都離不開電力電子技術。特別是飛機、船舶需要更多不同種類的電源,他們的運輸就更需要電力電子技術的支持。電梯也開始使用交流變頻調速,鐵道車輛運用了直流斬波器,火車將由PWM逆變交流牽引系統取代原來的直流系統。磁懸浮列車也是同樣采用電機傳動,超導磁浮鐵道系統為各先進國家關注的熱點。一旦成功,將使火車時速高達500km。這將大大提高運力,緩解交通運輸對國民經濟發展的制約。地鐵、輕軌車及機車牽引,已是電力電子技術的應用領域。

2.3 傳統產業

通過電力電子技術對電能的處理,使電能的使用達到合理、高效和節約,實現了電能使用最佳化。在一定程度上將信息處理與功率處理合一,使微電子技術與電力電子技術一體化,據預測,以后絕大部分電源都要經過電力電子技術處理后使用,為傳統產業和新興產業采用微電子技術創造了條件。在現代電力電子技術的支撐下,改善了勞動的惡劣環境,把工人帶入到現代化的智能工作室,使得傳統產業的勞動力強度有所降低,工作效率提高,進而改造了傳統產業。特別當應用于化石燃料電站和核電站中的時候,電力電子技術的能良好的控制其存在的安全隱患與環境污染。

2.4 家用電器

現代化電力電子技術以全控型新器件及各種PWM電路為代表,廣泛應用于交流調速系統,交流電氣牽引及家用電器等領域。人們開始享受到了電力電子技術帶來的恩惠。電視機、電冰箱、微波爐、電子計算機、洗衣機、電熱水器等都是應用電力電子技術發展而來的。例如高頻熒光燈比白熾燈效率高2倍~3倍,變頻空調器的使用就能節約30%的電能。電力電子技術使得家用電器日益向智能化發展,使人們享受科學技術帶來的美好享受。

3 結論

電力電子技術是智力、信息、知識密集型技術,其耗能低,污染少,展望電子電力技術的前景,電子電力技術將會跟隨時代的腳步不斷的創新,更高更好的新技術必將開拓更廣的領域,其良好的運用將很好的促進我國的現代化建設。

篇6

1. 電力電子技術的發展

現代電力電子技術的發展方向,是從以低頻技術處理問題為主的傳統電力電子學,向以高頻技術處理問題為主的現代電力電子學方向轉變。電力電子技術起始于五十年代末六十年代初的硅整流器件,其發展先后經歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術在許多新領域的應用。八十年代末期和九十年代初期發展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導體復合器件,表明傳統電力電子技術已經進入現代電力電子時代。

1.1 整流器時代

大功率的工業用電由工頻(50Hz)交流發電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變為直流電,因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發與應用得以很大發展。當時國內曾經掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導體廠家就是那時的產物。

1.2 逆變器時代

七十年代出現了世界范圍的能源危機,交流電機變頻惆速因節能效果顯著而迅速發展。變頻調速的關鍵技術是將直流電逆變為0~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態補償等。這時的電力電子技術已經能夠實現整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。

1.3 變頻器時代

進入八十年代,大規模和超大規模集成電路技術的迅猛發展,為現代電力電子技術的發展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發展,而后絕緣門極雙極晶體管(IGBT)的出現,又為大中型功率電源向高頻發展帶來機遇。MOSFET和IGBT的相繼問世,是傳統的電力電子向現代電力電子轉化的標志。據統計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現代電子技術不斷向高頻化發展,為用電設備的高效節材節能,實現小型輕量化,機電一體化和智能化提供了重要的技術基礎。

2. 現代電力電子的應用領域

2.1 計算機高效率綠色電源

高速發展的計算機技術帶領人類進入了信息社會,同時也促進了電源技術的迅速發展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進人了電子、電器設備領域。

計算機技術的發展,提出綠色電腦和綠色電源。綠色電腦泛指對環境無害的個人電腦和相關產品,綠色電源系指與綠色電腦相關的高效省電電源,根據美國環境保護署l992年6月17日“能源之星"計劃規定,桌上型個人電腦或相關的設備,在睡眠狀態下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。

2.2 通信用高頻開關電源

通信業的迅速發展極大的推動了通信電源的發展。高頻小型化的開關電源及其技術已成為現代通信供電系統的主流。在通信領域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統的相控式穩壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50-100kHz范圍內,實現高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。

因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

2.3 直流-直流(DC/DC)變換器

DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩、快速響應的性能,并同時收到節約電能的效果。用直流斬波器代替變阻器可節約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源), 同時還能起到有效地抑制電網側諧波電流噪聲的作用。

通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規模集成電路的發展,要求電源模塊實現小型化,因此就要不斷提高開關頻率和采用新的電路拓撲結構,目前已有一些公司研制生產了采用零電流開關和零電壓開關技術的二次電源模塊,功率密度有較大幅度的提高。

2.4 不間斷電源(UPS)

不間斷電源(UPS)是計算機、通信系統以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經整流器變成直流,一部分能量給蓄電池組充電,

另一部分能量經逆變器變成交流,經轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現。 現代UPS普遍了采用脈寬調制技術和功率M0SFET、IGBT等現代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術的引入,可以實現對UPS的智能化管理,進行遠程維護和遠程診斷。

目前在線式UPS的最大容量已可作到600kVA。超小型UPS發展也很迅速,已經有0.5kVA、lkVA、2kVA、3kVA等多種規格的產品。

2.5 變頻器電源

變頻器電源主要用于交流電機的變頻調速,其在電氣傳動系統中占據的地位日趨重要,已獲得巨大的節能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器, 將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅動交流異步電動機實現無級調速。

國際上400kVA以下的變頻器電源系列產品已經問世。八十年代初期,日本東芝公司最先將交流變頻調速技術應用于空調器中。至1997年,其占有率已達到日本家用空調的70%以上。變頻空調具有舒適、節能等優點。國內于90年代初期開始研究變頻空調,96年引進生產線生產變頻空調器,逐漸形成變頻空調開發生產熱點。預計到2000年左右將形成。變頻空調除了變頻電源外,還要求有適合于變頻調速的壓縮機電機。優化控制策略,精選功能組件,是空調變頻電源研制的進一步發展方向。

2.6 高頻逆變式整流焊機電源

高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應用前景。

逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經高頻變壓器耦合, 整流濾波后成為穩定的直流,供電弧使用。

由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。采用微處理器做為脈沖寬度調制(PWM)的相關控制器,通過對多參數、多信息的提取與分析,達到預知系統各種工作狀態的目的,進而提前對系統做出調整和處理,解決了目前大功率IGBT逆變電源可靠性。

國外逆變焊機已可做到額定焊接電流300A,負載持續率60%,全載電壓60~75V,電流調節范圍5~300A,重量29kg。

2.7 大功率開關型高壓直流電源

大功率開關型高壓直流電源廣泛應用于靜電除塵、水質改良、醫用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。

自從70年代開始,日本的一些公司開始采用逆變技術,將市電整流后逆變為3kHz左右的中頻,然后升壓。進入80年代,高頻開關電源技術迅速發展。德國西門子公司采用功率晶體管做主開關元件,將電源的開關頻率提高到20kHz以上。并將干式變壓器技術成功的應用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統的體積進一步減小。

國內對靜電除塵高壓直流電源進行了研制,市電經整流變為直流,采用全橋零電流開關串聯諧振逆變電路將直流電壓逆變為高頻電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。

2.8 電力有源濾波器

傳統的交流-直流(AC-DC)變換器在投運時,將向電網注入大量的諧波電流,引起諧波損耗和干擾,同時還出現裝置網側功率因數惡化的現象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網側三次諧波含量可達(70~80)%,網側功率因數僅有0.5~0.6。

電力有源濾波器是一種能夠動態抑制諧波的新型電力電子裝置,能克服傳統LC濾波器的不足,是一種很有發展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統開關電源的區別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流; (2)電流環基準信號為電壓環誤差信號與全波整流電壓取樣信號之乘積。

2.9 分布式開關電源供電系統

分布式電源供電系統采用小功率模塊和大規模控制集成電路作基本部件,利用最新理論和技術成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產效率。

八十年代初期,對分布式高頻開關電源系統的研究基本集中在變換器并聯技術的研究上。八十年代中后期,隨著高頻功率變換技術的迅述發展,各種變換器拓撲結構相繼出現,結合大規模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學界的研究熱點,論文數量逐年增加,應用領域不斷擴大。

分布供電方式具有節能、可靠、高效、經濟和維護方便等優點。已被大型計算機、通信設備、航空航天、工業控制等系統逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。

3. 高頻開關電源的發展趨勢

在電力電子技術的應用及各種電源系統中,開關電源技術均處于核心地位。對于大型電解電鍍電源,傳統的電路非常龐大而笨重,如果采用高頓開關電源技術,其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關電源技術,通過開關電源改變用電頻率,從而達到近于理想的負載匹配和驅動控制。高頻開關電源技術,更是各種大功率開關電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術。

3.1 高頻化

理論分析和實踐經驗表明,電氣產品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設備的體積重量大體下降至工頻設計的 5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關式整流器,都是基于這一原理。同樣,傳統“整流行業”的電鍍、電解、電加工、充電、浮充電、電力合 閘用等各種直流電源也可以根據這一原理進行改造, 成為“開關變換類電源”,其主要材料可以節約90%或更高,還可節電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統高頻設備固態化,帶來顯著節能、節水、節約材料的經濟效益,更可體現技術含量的價值。

3.2 模塊化

模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關器件和與之反并聯的續流二極管,實質上都屬于“標準”功率模塊(SPM)。近年,有些公司把開關器件的驅動保護電路也裝到功率模塊中去,構成了“智能化”功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應力(表現為過電壓、過電流毛刺)。為了提高系統的可靠性,有些制造商開發了“用戶專用”功率模塊,它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統的引線連接,這樣的模塊經過嚴格、合理的熱、電、 機械方面的設計,達到優化完美的境地。它類似于微

電子中的用戶專用集成電路。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應的散熱器上,就構成一臺新型的開關電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統連線,把寄生參數降到最小,從而把器件承受的電應力降至最低,提高系統的可靠性。另外,大功率的開關電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯工作,采用均流技術,所有模塊共同分擔負載電流,一旦其中某個模塊失效,其它模塊再平均分擔負載電流。這樣,不但提高了功率容量, 在有限的器件容量的情況下滿足了大電流輸出的要求, 而且通過增加相對整個系統來說功率很小的冗余電源模塊,極大的提高系統可靠性,即使萬一出現單模塊故障,也不會影響系統的正常工作,而且為修復提供充分的時間。 3.3 數字化

在傳統功率電子技術中,控制部分是按模擬信號來設計和工作的。在六、七十年代,電力電子技術完全是建立在模擬電路基礎上的。但是,現在數字式信號、數字電路顯得越來越重要,數字信號處理技術日趨完善成熟,顯示出越來越多的優點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調試和遙感遙測遙調,也便于自診斷、容錯等技術的植入。所以,在八、九十年代,對于各類電路和系統的設計來說,模擬技術還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC) 問題以及功率因數修正(PFC)等問題的解決,離不開模擬技術的知識,但是對于智能化的開關電源,需要用計算機控制時,數字化技術就離不開了。

3.4 綠色化

篇7

一、電力電子技術

電力電子技術是建立在電子學、電工原理和自動控制三大學科上的新興學科。因它本身是大功率的電技術,又大多是為應用強電的工業服務的,故常將它歸屬于電工類。電力電子技術的內容主要包括電力電子器件、電力電子電路和電力電子裝置及其系統。電力電子器件以半導體為基本材料,最常用的材料為單晶硅;它的理論基礎為半導體物理學;它的工藝技術為半導體器件工藝。近代新型電力電子器件中大量應用了微電子學的技術。通過電力電子技術對電能的處理,使電能的使用達到合理、高效和節約,實現了電能使用最佳化。例如,在節電方面,針對風機水泵、電力牽引、軋機冶煉、輕工造紙、工業窯爐、感應加熱、電焊、化工、電解等14個方面的調查,潛在節電總量相當于1990年全國發電量的16%,所以推廣應用電力電子技術是節能的一項戰略措施,一般節能效果可達10%-40%,我國已將許多裝置列入節能的推廣應用項目。

電力電子技術是計算技術在電力系統中的具體實現,隨著電力系統計算機化和信息化的水平不斷提高,電力電子技術在電力系統中的作用也越發明顯。簡單的說,電力電子技術就是通過計算機技術將強電和弱電進行有效的組合,它是計算機應用技術、電子技術、電路技術還有電力控制技術為一體的服務性的技術。

二、電力電子技術與現代建筑的結合-—智能照明系統

現代建筑中的照明不僅要求能為人們的工作、學習、生活提供良好的視察條件,能利用燈具造型和光色協調營造出具有一定風格和美感的室內環境以滿足人們和心理和生理要求,而且還要考慮到管理智能化和操作簡單化以及靈活適應未來照明布局和控制方式變更要求。一個優秀的智能照明系統有僅可以提升照明環境的品質,還必須做到充分利用和節約能源。相比之下,智能照明系統體現出強大的優越性,它在智能建筑中的應用會越來越廣泛。

1、智能照明系統在現代建筑中的應用效果

隨著照明系統應用場合的不斷變化,應用情況也逐步復雜和豐富多彩,僅靠簡單的開關控制已不能完成所需要的控制,所以要求照明控制也應隨之發展和變化,以滿足實際應用的需要。尤其是計算機技術、計算機網絡技術、各種新型總線技術和自動化技術的發展,使得照明控制技術有了很大的改觀。智能照明系統在現代建筑中的應用效果如下:

(1)實現照明控制智能化

采用智能照明控制系統,可以使照明系統工作在全自動狀態,系統將按預先設定的若干基本狀態進行工作,這些狀態會按預先設定的時間相互自動地切換。例如,當一個工作日結束后,系統將自動進入晚上的工作狀態,自動并極其緩慢地調暗各區域的燈光,同時系統的探測功能也將自動生效,將無人區域的燈自動關閉,并將有人區域的燈光調至最合適的亮度。此外,不可以通過編程器隨意改變各區域的光照度,以適應各種場合的不同場景要求。

(2)改善工作環境,提高工作效率

傳統照明控制系統中,配有傳統鎮流器的日光燈以100HZ的頻率閃動,這種頻閃使工作人員頭腦發脹、眼睛疲勞,降低了工作效率。而智能照明系統中的可調光電子鎮流器則工作在很高的頻率(40KHZ-70KHZ),不僅克服了頻閃,而且消除了起輝時的亮度不穩定,在為人們提供健康、舒適環境的同時,也提高了工作效率。

(3)自動調光,充分利用自然光

智能照明控制系統使用了先進的電力電子技術,能對大多數燈具(包括白織燈、日光燈、配以特殊鎮流器的鈉燈、水銀燈、霓虹燈等)進行智能調光。智能照明系統中的光電感應開關通過測定工作面的照度與設定比較,來控制照明開關,這樣可以最大限度地利用自然光,而達到節能的目的,也可提供一個較不受季節與外部氣候環境的相對穩定的視覺環境。一般來講,越靠近窗自然光照度越高,從而人工照明提供的照度就低,但合成照度應維持在設計照度值。

(4)提高管理水平,減少維護費用

智能照明控制系統,將普通照明人為的開與關轉換成智能化管理,不僅使大樓的管理者能將其高素質的管理意識運用于照明控制系統中去,而且同時將大大減少大樓的運行維護費用,并帶來極大的投資回報。

2、智能照明系統的組成

智能照明系統是利用先進電磁調壓及電子感應技術,對供電進行實時監控與跟蹤,自動平滑地調節電路的電壓和電流幅度,改善照明電路中不平衡負荷所帶來的額外功耗,提高功率因素,降低燈具和線路的工作溫度,達到優化供電目的照明控制系統。

(1)控制系統中心

一般由服務器、計算機工作站、網絡控制交換設備等組成的計算機硬件控制系統和由數據庫、控制應用軟件等組成的照明控制軟件等兩大部分組成。系統最大的特點是場景控制,在同一室內可有多路照明回路,對每一回路亮度調整后達到某種燈光氣氛稱為場景;可預先設置不同的場景(營造出不同的燈光環境),切換場景時的淡入淡出時間,使燈光柔和變化.時鐘控制,利用時鐘控制器,使燈光呈現按每天的日出日落或有時間規律的變化.利用各種傳感器及遙控器達到對燈光的自動控制。

(2)控制信號人民傳輸系統

通過控制信號傳輸系統完成照明網絡控制系統中有關控制信號和反饋信號的傳輸,從而完成對控制區域內的照明設備進行控制。

(3)區域照明控制

網絡照明控制系統實際上是對一定控制區域的若干小區域的照明控制系統(設備)進行聯網控制,區域照明控制系統(設備)是整個聯網控制系統的一個子系統,它既可以作為一個獨立的控制系統使用,也可以作為聯網控制系統的終端設備使用。

(4)燈控設備

通過整個照明控制系統要完成對每盞燈的控制,燈控設備安裝在每盞燈上,并可以通過遠程控制信號傳輸單元與照明控制中心通信,從而完成對每盞燈的有關控制(如開/關、調光控制),并可以通過照明控制中心對每盞燈的工作狀態進行有關監控,從而完成對每盞燈的控制。

三、結束語

智能照明系統是電力電子技術與現代建筑有效的結合,良好的使用效果與社會、經濟的效應,推動了智能照明的技術迅速向前發展,并形成照明發展的一個重要趨勢。隨著計算機技術、通信技術、自動控制技術、總線技術、信號檢測技術和微電子技術的迅速發展和相互滲透,照明控制技術有了很大的發展,照明進入了智能化控制的時代。實現照明控制系統智能化的主要目的有兩個:一是可以提高照明系統的控制和管理水平,減少照明系統的維護成本;二是可以節約能源,減少照明系統的運營成本。智能照明由電子計算機進行控制與管理, 因而開發照明方面的計算機硬件和軟件工作是今后照明設計中的一項重要任務。

參考文獻:

篇8

【摘要】電力電子及開關電源技術因應用需求不斷向前發展,新技術的出現又會使許多應用產品更新換代,還會開拓更多更新的應用領域。

關鍵詞 電力電子技術;發展

現代電源技術是應用電力電子半導體器件,綜合自動控制、計算機(微處理器)技術和電磁技術的多學科邊緣交又技術。在各種高質量、高效、高可靠性的電源中起關鍵作用,是現代電力電子技術的具體應用。

當前,電力電子作為節能、節才、自動化、智能化、機電一體化的基礎,正朝著應用技術高頻化、硬件結構模塊化、產品性能綠色化的方向發展。在不遠的將來,電力電子技術將使電源技術更加成熟、經濟、實用,實現高效率和高品質用電相結合。

1.電力電子技術的發展?

現代電力電子技術的發展方向,是從以低頻技術處理問題為主的傳統電力電子學,向以高頻技術處理問題為主的現代電力電子學方向轉變。電力電子技術起始于五十年代末六十年代初的硅整流器件,其發展先后經歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術在許多新領域的應用。八十年代末期和九十年代初期發展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導體復合器件,表明傳統電力電子技術已經進入現代電力電子時代。

2.現代電力電子的應用領域?

2.1計算機高效率綠色電源。?

(1)高速發展的計算機技術帶領人類進入了信息社會,同時也促進了電源技術的迅速發展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進人了電子、電器設備領域。?

(2)計算機技術的發展,提出綠色電腦和綠色電源。綠色電腦泛指對環境無害的個人電腦和相關產品,綠色電源系指與綠色電腦相關的高效省電電源,根據美國環境保護署l992年6月17日“能源之星”計劃規定,桌上型個人電腦或相關的外圍設備,在睡眠狀態下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。?

2.2通信用高頻開關電源。?

(1)通信業的迅速發展極大的推動了通信電源的發展。高頻小型化的開關電源及其技術已成為現代通信供電系統的主流。在通信領域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統的相控式穩壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50~100kHz范圍內,實現高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。?

(2)因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。?

2.3直流-直流(DC/DC)變換器。?

(1)DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩、快速響應的性能,并同時收到節約電能的效果。用直流斬波器代替變阻器可節約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源),同時還能起到有效地抑制電網側諧波電流噪聲的作用。?

(2)通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規模集成電路的發展,要求電源模塊實現小型化,因此就要不斷提高開關頻率和采用新的電路拓撲結構,目前已有一些公司研制生產了采用零電流開關和零電壓開關技術的二次電源模塊,功率密度有較大幅度的提高。?

2.4不間斷電源(UPS)。?

(1)不間斷電源(UPS)是計算機、通信系統以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經逆變器變成交流,經轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現。?

(2)現代UPS普遍了采用脈寬調制技術和功率M0SFET、IGBT等現代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術的引入,可以實現對UPS的智能化管理,進行遠程維護和遠程診斷。?

(3)目前在線式UPS的最大容量已可作到600kVA。超小型UPS發展也很迅速,已經有0.5kVA、lkVA、2kVA、3kVA等多種規格的產品。?

2.5變頻器電源。?

(1)變頻器電源主要用于交流電機的變頻調速,其在電氣傳動系統中占據的地位日趨重要,已獲得巨大的節能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅動交流異步電動機實現無級調速。?

(2)國際上400kVA以下的變頻器電源系列產品已經問世。八十年代初期,日本東芝公司最先將交流變頻調速技術應用于空調器中。至1997年,其占有率已達到日本家用空調的70%以上。變頻空調具有舒適、節能等優點。國內于90年代初期開始研究變頻空調,96年引進生產線生產變頻空調器,逐漸形成變頻空調開發生產熱點。預計到2000年左右將形成。變頻空調除了變頻電源外,還要求有適合于變頻調速的壓縮機電機。優化控制策略,精選功能組件,是空調變頻電源研制的進一步發展方向。?

2.6高頻逆變式整流焊機電源。?

(1)高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應用前景。?

(2)逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經高頻變壓器耦合,整流濾波后成為穩定的直流,供電弧使用。?

(3)由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。采用微處理器做為脈沖寬度調制(PWM)的相關控制器,通過對多參數、多信息的提取與分析,達到預知系統各種工作狀態的目的,進而提前對系統做出調整和處理,解決了目前大功率IGBT逆變電源可靠性。?

(4)國外逆變焊機已可做到額定焊接電流300A,負載持續率60%,全載電壓60~75V,電流調節范圍5~300A,重量29Kg。?

2.7大功率開關型高壓直流電源。?

(1)大功率開關型高壓直流電源廣泛應用于靜電除塵、水質改良、醫用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100KW。?

(2)自從70年代開始,日本的一些公司開始采用逆變技術,將市電整流后逆變為3kHz左右的中頻,然后升壓。進入80年代,高頻開關電源技術迅速發展。德國西門子公司采用功率晶體管做主開關元件,將電源的開關頻率提高到20kHz以上。并將干式變壓器技術成功的應用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統的體積進一步減小。?

(3)國內對靜電除塵高壓直流電源進行了研制,市電經整流變為直流,采用全橋零電流開關串聯諧振逆變電路將直流電壓逆變為高頻電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。?

2.8電力有源濾波器。?

(1)傳統的交流-直流(AC-DC)變換器在投運時,將向電網注入大量的諧波電流,引起諧波損耗和干擾,同時還出現裝置網側功率因數惡化的現象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網側三次諧波含量可達(70~80)%,網側功率因數僅有0.5~0.6。?

(2)電力有源濾波器是一種能夠動態抑制諧波的新型電力電子裝置,能克服傳統LC濾波器的不足,是一種很有發展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統開關電源的區別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環基準信號為電壓環誤差信號與全波整流電壓取樣信號之乘積。?

2.9分布式開關電源供電系統。?

(1)分布式電源供電系統采用小功率模塊和大規模控制集成電路作基本部件,利用最新理論和技術成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產效率。?

(2)八十年代初期,對分布式高頻開關電源系統的研究基本集中在變換器并聯技術的研究上。八十年代中后期,隨著高頻功率變換技術的迅述發展,各種變換器拓撲結構相繼出現,結合大規模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學界的研究熱點,論文數量逐年增加,應用領域不斷擴大。?

(3)分布供電方式具有節能、可靠、高效、經濟和維護方便等優點。已被大型計算機、通信設備、航空航天、工業控制等系統逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。

3.高頻開關電源的發展趨勢?

在電力電子技術的應用及各種電源系統中,開關電源技術均處于核心地位。對于大型電解電鍍電源,傳統的電路非常龐大而笨重,如果采用高頓開關電源技術,其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關電源技術,通過開關電源改變用電頻率,從而達到近于理想的負載匹配和驅動控制。高頻開關電源技術,更是各種大功率開關電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術。?

3.1高頻化。

理論分析和實踐經驗表明,電氣產品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設備的體積重量大體下降至工頻設計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關式整流器,都是基于這一原理。同樣,傳統“整流行業”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據這一原理進行改造,成為“開關變換類電源”,其主要材料可以節約90%或更高,還可節電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統高頻設備固態化,帶來顯著節能、節水、節約材料的經濟效益,更可體現技術含量的價值。?

3.2模塊化。?

(1)模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關器件和與之反并聯的續流二極管,實質上都屬于“標準”功率模塊(SPM)。近年,有些公司把開關器件的驅動保護電路也裝到功率模塊中去,構成了“智能化”功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應力(表現為過電壓、過電流毛刺)。為了提高系統的可靠性,有些制造商開發了“用戶專用”功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統的引線連接,這樣的模塊經過嚴格、合理的熱、電、機械方面的設計,達到優化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應的散熱器上,就構成一臺新型的開關電源裝置。?

(2)由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統連線,把寄生參數降到最小,從而把器件承受的電應力降至最低,提高系統的可靠性。另外,大功率的開關電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯工作,采用均流技術,所有模塊共同分擔負載電流,一旦其中某個模塊失效,其它模塊再平均分擔負載電流。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統來說功率很小的冗余電源模塊,極大的提高系統可靠性,即使萬一出現單模塊故障,也不會影響系統的正常工作,而且為修復提供充分的時間。?

3.3數字化。

在傳統功率電子技術中,控制部分是按模擬信號來設計和工作的。在六、七十年代,電力電子技術完全是建立在模擬電路基礎上的。但是,現在數字式信號、數字電路顯得越來越重要,數字信號處理技術日趨完善成熟,顯示出越來越多的優點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調試和遙感遙測遙調,也便于自診斷、容錯等技術的植入。所以,在八、九十年代,對于各類電路和系統的設計來說,模擬技術還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數修正(PFC)等問題的解決,離不開模擬技術的知識,但是對于智能化的開關電源,需要用計算機控制時,數字化技術就離不開了。?

3.4綠色化。?

(1)電源系統的綠色化有兩層含義:首先是顯著節電,這意味著發電容量的節約,而發電是造成環境污染的重要原因,所以節電就可以減少對環境的污染;其次這些電源不能(或少)對電網產生污染,國際電工委員會(IEC)對此制定了一系列標準,如IEC555、IEC917、IECl000等。事實上,許多功率電子節電設備,往往會變成對電網的污染源:向電網注入嚴重的高次諧波電流,使總功率因數下降,使電網電壓耦合許多毛刺尖峰,甚至出現缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數的方法。這些為2l世紀批量生產各種綠色開關電源產品奠定了基礎。?

(2)現代電力電子技術是開關電源技術發展的基礎。隨著新型電力電子器件和適于更高開關頻率的電路拓撲的不斷出現,現代電源技術將在實際需要的推動下快速發展。在傳統的應用技術下,由于功率器件性能的限制而使開關電源的性能受到影響。為了極大發揮各種功率器件的特性,使器件性能對開關電源性能的影響減至最小,新型的電源電路拓撲和新型的控制技術,可使功率開關工作在零電壓或零電流狀態,從而可大大的提高工作頻率,提高開關電源工作效率,設計出性能優良的開關電源。

篇9

中圖分類號:TM76 文獻標識碼:A 文章編號:1671-7597(2014)10-0007-02

1 在電力系統應用中電話通信技術的意義

應用自動化設備遠程電話診斷遙控裝置是目前解決電力自動化生產運行監控和遠程維護比較理想的手段,為了使電網與電力調度自動化系統滿足安全穩定的運行的要求,當電氣設備出現故障時能迅速反應及處理,就需要有安全、訊速、穩定、準確的自動化維護手段,尤其是能夠遠程診斷、維護、遙控。

電話遙控與常規的遙控方式相比,不需要進行專門的布線,傳輸通道可共用,其具有突出的優越性。它是利用有線固定電話網絡和無線移動電話網絡以及用戶電話交換網絡共同構成。目前幾乎沒有死角的移動GSM網絡十分完善,正趨于完善的聯通CDMA網絡和城市小靈通的不斷發展和推廣,不斷促進電話有線與無線移動網絡達到結合全國各地聯網的作用,使其遙控的距離不受限制。靈活方便的GSM,CDMA、小靈通等無線移動短信通信,可不但以跨市、省乃至跨國傳送,且每送一條短信息只要1毛錢。因而利用手機短信來實現超遠程遙控工業設備及報警是一個非常不錯的選擇,因為其成本最低也最便捷。

2 遠程電話遙控設計與模塊結構

1)電話振鈴遙控電路采用的技術原理。遠端電話控制模塊只有對有權電話的振鈴信號進行接收,才可以對相應的遙控電路進行驅動,根據要求將相應的狀態信息進行回傳。拒絕接收無權電話的振鈴信號,這種無權信號不能驅動遙控電路。遠端電話的振鈴遙控使用結合振鈴電壓、號碼過濾器、提取來電顯示號碼等手段,將幾部有權用戶的手機與固定電話設置到遠端分機模塊中,使其電話號碼具有“身份證”遙控的功能。(見圖1)

圖1 振鈴遙控電路原理

2)DTMF撥號遙控電路采用的技術原理。DTMF信號最早應用于程控電話交換系統,是一種穩定可靠的實用技術,用來替代傳統的脈沖信號。DTMF信號是由低音組(697 Hz,770 Hz,852 Hz,941 Hz)和高音組(1209 Hz,l336 Hz,l477 Hz,l633 Hz)四個音頻信號組成的,使用8中取2的方法,在高低兩組音頻中,分別選取一個音頻信號進行復合組成,形成一個有16個編碼信號系統。

遠端控制模塊中的DTMF撥號遙控是指在遠端電話控制模塊中先對有權電話進行設置,使其電話號碼具有“身份證”遙控的功能,當對其撥號驗證通過后,對所構成得通信進行自動提示,再進行DTMF編碼撥號,對相對應的遙控對象進行驅動。對非有權電話撥號拒絕接聽,非有權電話無法進行撥號。(DMTF撥號遙控指令編碼方案見表1,電路設計原理見圖2)

表1 DTMF撥號遙控指令編碼

序號 遙控路別 遙控開啟撥號編碼 遙控關閉撥號編碼

1 第一路開關 1* 1#

2 第二路開關 2* 2#

3 第三路開關 3* 3#

4 第四路開關 4* 4#

5 第五路開關 5* 5#

6 第六路開關 6* 6#

7 第七路開關 7* 7#

8 第八路開關 8* 8#

9 1~8路全部 9* 9#

圖2 DTMF撥號遙控電路原理圖

3)手機短信遙控電路采用的技術原理。遠端電話控制模塊的短信遙控技術結合了過濾器、短信內容提取過濾、提取來電顯示號等方法。先在遠端電話控制模塊內設置有權手機號碼,讓其具備遙控“身份證”的功能,并對遙控指令的短信內容進行預先設置。若預置的短信內容和接收到的短信內容相同,電話號碼和指定號碼也一致后,則對相應的遙控對象進行驅動,對執行命令信息進行回傳。反之,則拒絕執行遙控指令。(見圖3)

圖3 短信遙控電路原理

4)告警信息采集和回傳信息傳送原理。遠端電話控制程序模塊的回傳信息傳送和告警信息采集為保證適合不同傳感器的連接,采用單片機電路。回傳報警短信息傳送至主站主機和有權電話上。告警與回傳電路接口分別用上沿觸發(觸發電平由低變高0 V-5 V)和下沿觸發(觸發電平由高變低5 V-0 V)。

3 電話遙控技術在電力自動化中應用

自動化設備實現遠程電話遙控是一種處理智能遙控系統、維護遠程自動化設備的方法,特別是在能夠可靠穩定的運行無人值班站自動化設備運行管理中的運用。電話遙控技術充分適應了電網調度自動化系統和電力企業供電保障系統安全穩定的運行需求。成功應用自動化設備遠程電話診斷遙控模塊,不僅對當前生產運行監控和遠程維護問題進行了有效地解決,還對電力企業在設備自動化管理維護的發展起到了促進作用。電話控制模塊擁有安裝便捷、造價低、安全可靠、使用簡單等多種優點。利用電話及移動網絡通道建設安裝周期短,振鈴遙控沒有費用,撥號遙控僅需幾十秒,特別是手機短信息靈活方便,可以跨市、省,乃至跨國傳送,尤其是利用短信息來實現報警、超遠程遙控工業設備更能節省維護費用,可利用住宅電話、辦公電話、移動手機,因此用電話進行遠程診斷遙控方便、簡捷、運行費用低。

4 結束語

電力系統通信技術是緊跟計算機和通信等IT技術的發展而發展的,遠程電話控制模塊在電力自動化系統中應用能夠對自動化設備的缺陷故障進行,能夠縮短處理設備故障進行快捷、準確、迅速的診斷和解決,使資源浪費的現象得到降低,對現有通信公網資源進行了充分的利用,對電力自動化系統通信專網建設的成本也得到了相應的降低。此外,還降低人員的勞動強度、車輛的磨損等,減少了自動化設備缺陷處理的維護經費,具有顯著的社會效益和經濟效益,對遠程維護發展有著廣闊的應用前景和與時俱進的意義。

參考文獻

篇10

隨著科學信息技術和現代電子技術的不斷發展,人們更重視了供電技術的先進性和安全性。現代化的科技的高速發展讓電力系統自動化技術拓寬了應用領域,它憑借了現代化的科學信息技術與網絡電子技術對供電系統進行了監督控制,還能夠將數據記錄號,把記錄好的數據運用網絡傳達到電力的控制監督部門的電腦上,讓監控部門的工作員工能對供電系統的運轉狀況進行技術的分析,找到故障的原因,根據數據進行調整。自動化技術是一項非常復雜且綜合性比較強的技術,它與信息技術、控制技術、電子技術、網絡技術等多種理論技術有著不可分割的聯系。現代電力系統自動化技術的快速發展,為電力系統和電力行業提供了能源管理與環境質量問題的解決方案,并且還消除了現代化信息與自動化技術兩者的矛盾。

1 現代電力系統自動化技術的發展狀況

現代電力系統的特征:

1.1 電網的規模逐漸變大

我國工業在以高速的腳步進行前進,這促進了電網的規模不斷地拓寬。我國的有關電力的系統都是歸國家所管理的,國家能夠很好地將各個地方的電網進行聯系,各個地方的電網的聯系形成了一個整體的大電網的體系。并且大電網體系具備很多的特點:(1)系統很龐大。整體的電力系統一般都是有成百臺的設備構成的,想要進行數據分析、功能操作,必須要保證電子技術和網絡信息技術的前沿性和高端性。(2)很難構建模型。在對電力系統進行研究和分析的時候,需要做的首要工作就是構建模型,但是,整個的電力系統中的設備多、系統復雜,因此給構建模型增添了許多麻煩,還要研究新的指導方案。(3)很難進行計算。整體的電力系統的設備龐大,構建模型時要考慮的問題很多,制約的條件也很多,所以讓計算變得很困難。

1.2 現代電力系統能夠進行遠距離的供電

在我國的一些地區,都是一些高山峻嶺的地方,無法進行供電電線的施工,一是成本很高,二是受到了環境的制約。最科學合理的方法就是建設合理數量的供電電線,通過各種信息、電子技術的應用尤其是柔性供電的技術來增加供電電線的供電量。這樣的遠距離的供電方式是由我國的資源的分布所導致的,這樣的特殊的供電方式還沒有理論作為支撐,因此給現代電力系統的分析和研究帶來了很多的困難。

2 現代電力系統自動化技術的實際應用

2.1 電網系統的自動化

電網系統的自動化技術的起源很早,它的應用同時也是現代化電網技術自動化的開端。電網系統的自動化技術主要有:電網的主要系統與運行的裝置。它的最重要的作用就是能夠對現代電網的運轉進行調整、對現代電網的正常運轉進行監控與對現代電網出現的事故進行分析和解決。

2.2 發電廠的自動化技術應用

發電廠的自動化技術的應用主要有:自動發電系統、自動電量的控制體系與動力設備的自動化系統。中國通常的發電廠是分為兩種發電廠,一種是水電力發電廠;另一種是火電力發電廠。不管是水電力的發電方式還是火電火燒其他的別的發電手段,在自動化的技術系統中都能找到相同的地方,相比較來說,一般的水電廠的自動化系統的技術要高于火電廠。

2.3 變電站的系統自動化技術

變電站的系統自動化是包括現代化的信息技術、網絡技術等,并通過監控、檢測和保護等措施對變電站內的重要機械設備實行自動化。現在,隨著計算機的監控技術融入到變電站的運行中,中國的變電站系統正向著自動化的方向發展著,并且要繼續實行無人監控的工作方式。真正地實現機械設備自動化、自動監控、自動記錄。

3 現代電力系統自動化技術的發展前景

(1)現代電力系統的綜合自動化。現代電力系統的綜合自動化就是通過對整體系統的優化方式作為基礎,實現信息的資源共享,使自動化技術水平不斷地提高,從而實現現代化電力系統的集成分布。并且今后的現代電力系統的自動化技術會這樣繼續發展,把傳統的分散型等一些系統進行集成化,應用世界前沿的高端化的科學技術實現一個統一的信息綜合系統。

(2)現代電力系統自動化技術在監控方面不斷走向科學化、合理化、自動化。將單一的設備零件實現向系統化發展。并且需要應用多種自動化來對模型進行分析研究,應用現代化的高端科技來更新現代電力系統的自動化技術。

(3)根據開放性的電力系統和國家的要求發展現代電力系統的自動化,讓其能夠適應現代的電力系統的基礎與市場的發展需求。用戶可以根據需要,隨意地調配自動化系統,將所使用的電力系統或者自動化設備所造成的技術與發展的落后情況進行分析和解決。盡管現代電力系統的自動化技術已經融入到了網絡系統與監控系統的主要運行階段,但是由于我國的電力的需要量很大,并且現代電力系統的發展又比較遲,因此,需要不斷地完善技術,提高現代化電力系統自動化的水平。

4 結語

現代化電力系統自動化技術目前還在不斷地向前發展著,并且它應用與很多工業領域,對與我國這樣一個對電力需求量很大的國家來說,現代化電力系統自動化技術的水平是很重要的,因此,需要借鑒國際電力系統的自動化技術,吸收他們的應用經驗,根據我國的實際情況來實施。提高我國的現代化電力系統自動化技術的水平,給人們提供一個科學的、安全的、合理的用電服務和供電環境。

參考文獻:

[1]車挺,劉帥鋒.試論電力系統自動化技術的應用[J].中華民居,2012(6).

[2]易林海.對電力系統自動化的淺析[J].大科技,2012(01).

篇11

在企業信息集成系統中,永平銅礦檔案館使用清華企業檔案管理系統軟件,根據永平銅礦檔案館的實際情況,設置了:檔案查詢子系統、服務器設置工具、光盤制作子系統、借閱管理子系統、權限設置子系統、收集整編子系統、數據錄入子系統、數據維護子系統、數據轉換子系統、統計報表子系統、系統設置子系統、銷毀管理子系統。我們檔案工作者將發現企業檔案發生了巨大變化。

檔案載體的轉變。

首先是企業檔案載體的轉變。在企業實現計算機全程管理后,適時實現了信息數據的遠近傳遞交換和處理。在企業各項管理活動中,電子文件以其快捷的辦文進度和傳遞速度逐步取代了紙質文件。電子圖紙也以手工制作所無可比擬的優勢大量出現。通過計算機輔助設計使產品圖紙的設計、存儲、查詢和修改變得快捷又方便。例如生產或開發一項較大項目的產品就需產生上萬份的圖紙,而其中許多又要承襲老產品的大部分成果,因此電子圖紙顯示了其比紙質圖紙更旺盛的生命力,保存電子圖紙要比保存底圖方便、省時、省力并且有意義得多。

其次是企業檔案的分類變化。原有的企業關于文書檔案、科技檔案、產品檔案、基建檔案、會計檔案、人事檔案等傳統分類方案將被打破,取而代之以企業信息集成系統中各個管理模塊、流程的設置。一份完整的檔案信息分散在幾個管理系統中,計算機依照規定指令根據工作目標隨時設立和調整類目。各企業檔案信息的分類不盡相同,但可以肯定的是計算機管理過程中企業的檔案分類更能貼近企業的生產、經營、管理等各方面狀況,分類也將更詳細、更科學、更規范。此外,在企業檔案接收和保管上也有所改變。以往的企業檔案工作者以參加科研產品鑒定、重要設備開箱及重要建設項目、技術改造竣工驗收作為對其企業檔案的監督、指導和接收就顯得有些滯后了。

隨著辦公自動化的普及,如果不對隨時大量產生的電子文件加以管理,勢必帶來以下風險:

(1)導致系統癱瘓或導致任何人均可無控制地存取信息而使系統變得不安全。

(2)大規模的、無系統的、隨時可能產生的違法破壞的風險增加。

(3)使有價值的公文與檔案丟失。

(4)安全措施遭到破壞的風險增加。

(5)造成文件被非法變更與刪除,從而使數據丟失。

(6)給社會帶來麻煩。

(7)造成不必要的延遲與公務處理故障。

(8)造成不必要的在量人力、物力、財力的浪費。

在傳統檔案管理理論指導下,人們只能將電子文件再轉換為紙質文件,然后按紙質文件管理方式加以整理、歸檔和保存。目前的這種電子文件管理方法不但沒有減少管理人員的工作量,反而增加了負擔,在某種程度上,還制約了加快檔案現代化管理的步伐。

被轉化為紙質文件后的電子文件被人們存入光盤中,放入檔案柜內加以保存,而很少再去利用,由此造成數據丟失與資源浪費。有人甚至將這類電子文件當成書寫數據庫的工具,依工作需要隨時對原數據加以修改、補充,致使原文件被弄得面目全非。例如,人事部門每年的職工基本情況數據統計都在上一年度的文件上修改,這既是因為單機容量有限,也因為圖個工作方便。再有,機要打字員因打印文件數量太多,不再統統存盤,或保存一段時間后便以刪除。既然檔案部門未規定電子文件歸檔,這樣做也無不妥,反正已有一份紙質文件歸檔了。由此,造成大量電子文件損毀。

由此可見,對電子文件的產生不加管理或以傳統文件管理方式來對電子文件進行管理會帶來許多不良后果,如使文件無法充分地滿足本部門責任要求與其他部門要求;產生的文件被破壞或當需要它們時找不到;當文件有多個版本存在時,無法對真實可靠的版本進行識別與檢索;產生的數據無法資源共享等。

以紙質為主體的傳統檔案的管理方法與技術,是經過長期實踐、不斷豐富才成為一門科學的。但電子文件與傳統文件各有其特點,在許多地方是完全不同的,因而在管理方法上如果照搬紙質文件管理方法,就會造成電子文件的文件價值、利用價值的損失。

傳統檔案可以不管文件的形成、承辦過程的具體情況,只要對具有長期保存價值的文件,在它完成文件階段使命后,對其進行收集、整理、歸檔、保管就行。但電子文件的歸檔,檔案人員必須在文件的設計與形成階段就要進行指導,承辦過程中檔案人員要參與對其管理并進行監督,否則將無收集、整理、歸檔可言。

在電子環境中,如果檔案人員不積極介入文件的形成和保管過程,文件很可能不存在或至少不可能被鑒定、保存、編目或者提供利用。這就是說企業檔案人員如果不進入到企業信息集成系統中去,則很難掌握到企業信息的核心部分甚至接收不到檔案。的確,無時無刻不在產生的電子文件、電子圖紙使企業檔案工作者再也無法坐等檔案的最后形成與歸檔了。他們必須在產生電子文件的源頭就行使檔案的監督指導職能。參照國家有關文件制定出本企業的《電子文件管理辦法》,提請企業信息集成系統的編制人員在其系統的設計和運行過程中加入電子檔案文件的鑒定、歸檔、保存、利用等檔案管理內容。例如在計算機輔助設計過程中,要求計算機詳細記錄設計、加工過程中的原始資料及相應的更改信息,要在不同的版本上注明當前的有效資料,以確保最終歸檔使用的是正確版本的圖形或圖紙。

企業檔案工作者必須在專業人員的指導下,學會運用專門的檔案信息接收管理平臺,要懂得如何控制和維護檔案信息資源的有效性、可靠性和實時性,掌握電子檔案信息的收集、管理。

主站蜘蛛池模板: 日韩黄色网址 | 精品一区二区三区免费 | 国产精品久久久久7777按摩 | 免费精品 | 91精品国产99久久久久久红楼 | 久久久久国产一区二区 | 97国产视频| 美女国内精品自产拍在线播放 | 国产一区二区三区久久久 | 国产成人99久久亚洲综合精品 | 精品国产一区二区三区免费 | 最新日韩电影 | 成人一区二区三区 | 黄色一级毛片免费看 | 国产精品高清在线观看 | 玖玖在线视频 | 玖玖在线资源 | 精品久久久精品 | 人人草人人干 | 久久九九视频 | 欧美久久一区二区 | 久久不卡| 福利视频网 | 国产精品久久久久久久免费软件 | а天堂中文官网 | 欧美成人第一页 | 国产一区精品 | 精品一级| 欧美成人r级一区二区三区 欧美午夜精品一区 | 日韩免费在线观看视频 | 91亚洲国产成人久久精品网站 | 精品一区二区三区国产 | 日韩国产在线观看 | 久久精品免费观看 | 亚洲精品一区二区三区在线观看 | 欧美日韩一二三 | 国产精品久久久久久久7电影 | 国产亚洲精品久久久优势 | 久久亚| 午夜伊人 | 国产性色|