時間:2023-03-08 15:38:21
序論:速發表網結合其深厚的文秘經驗,特別為您篩選了11篇初一數學考試分析總結范文。如果您需要更多原創資料,歡迎隨時與我們的客服老師聯系,希望您能從中汲取靈感和知識!
初一上冊數學知識點總結有理數及其運算板塊:
1、整數包含正整數和負整數,分數包含正分數和負分數。
正整數和正分數通稱為正數,負整數和負分數通稱為負數。
2、正整數、0、負整數、正分數、負分數這樣的數稱為有理數。
3、絕對值:數軸上一個數所對應的點與原點的距離叫做該數的絕對值,用“||”表示。
整式板塊:
1、單項式:由數與字母的乘積組成的式子叫做單項式。
2、單項式的次數:一個單項式中,所有字母的指數的和叫做這個單項式的次數。
3、整式:單項式與多項式統稱整式。
4、同類項:字母相同,并且相同字母的指數也相同的項叫做同類項。
一元一次方程。
1、含有未知數的等式叫做方程,使方程左右兩邊的.值都相等的未知數的值叫做方程的解。
2、移項:把等式一邊的某項變號后移到另一邊,叫做移項等。
其實,七年級上冊數學知識點總結還包括很多,但是我想,萬變不離其宗。
大家平時要注意整理與積累。配合多加練習。一些知識要點及時記錄在筆記本上,一些錯題也要及時整理、復習。一個個知識點去通過。我相信只要做個有心人,就可以在數學考試中取得高分。
初一上冊數學知識點整理一、:代數初步知識。
1.代數式:用運算符號“+-×÷……”連接數及表示數的字母的式子稱為代數式(字母所取得數應保證它所在的式子有意義,其次字母所取得數還應使實際生活或生產有意義;單獨一個數或一個字母也是代數式)
2.列代數式的幾個注意事項:
(1)數與字母相乘,或字母與字母相乘通常使用“?”乘,或省略不寫;
(2)數與數相乘,仍應使用“×”乘,不用“?”乘,也不能省略乘號;
(3)數與字母相乘時,一般在結果中把數寫在字母前面,如a×5應寫成5a;
(4)帶分數與字母相乘時,要把帶分數改成假分數形式,如a×應寫成a;
(5)在代數式中出現除法運算時,一般用分數線將被除式和除式聯系,如3÷a寫成的形式;
(6)a與b的差寫作a-b,要注意字母順序;若只說兩數的差,當分別設兩數為a、b時,則應分類,寫做a-b和b-a.
二、:幾個重要的代數式(m、n表示整數)。
(1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2;
(2)若a、b、c是正整數,則兩位整數是:10a+b,則三位整數是:100a+10b+c;
(3)若m、n是整數,則被5除商m余n的數是:5m+n;偶數是:2n,奇數是:2n+1;三個連續整數是:n-1、n、n+1;
(4)若b>0,則正數是:a2+b,負數是:-a2-b,非負數是:a2,非正數是:-a2.
三、:有理數。
1.有理數:
(1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;π不是有理數;
(2)有理數的分類:①②
(3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;
(4)
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線.
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)注意:a-b+c的相反數是-a+b-c;a-b的相反數是b-a;a+b的相反數是-a-b;
(3)
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2)絕對值可表示為:初一上冊知識點絕對值的問題經常分類討論;
(3)
(4)|a|是重要的非負數,即|a|≥0;注意:|a|?|b|=|a?b|,
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大于一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數-小數>0,小數-大數
四、:有理數法則及運算規律。
(1)同號兩數相加,取相同的符號,并把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數.
2.有理數加法的運算律:
(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c).
3.有理數減法法則:減去一個數,等于加上這個數的相反數;即a-b=a+(-b).
4.有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,并把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定.
5.有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac.
6.有理數除法法則:除以一個數等于乘以這個數的倒數;注意:零不能做除數,.
7.有理數乘方的法則:
(1)正數的任何次冪都是正數;
五、:乘方的定義。
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
(3)
(4)據規律底數的小數點移動一位,平方數的小數點移動二位.
2.
3.近似數的精確位:一個近似數,四舍五入到那一位,就說這個近似數的精確到那一位.
4.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字.
5.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數學計算的最重要的原則.
6.特殊值法:是用符合題目要求的數代入,并驗證題設成立而進行猜想的一種方法,但不能用于證明.
六、:整式的加減。
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。
或雖含有除法運算,但除式中不含字母的一類代數式叫單項式.
2.單項式的系數與次數:單項式中不為零的數字因數,叫單項式的數字系數,簡稱單項式的系數;系數不為零時,單項式中所有字母指數的和,叫單項式的次數.
3.多項式:幾個單項式的和叫多項式.
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數;注意:(若a、b、c、p、q是常數)是常見的兩個二次三項式.
5.整式:單項式和多項式統稱為整式.
七、:整式分類為。
1.同類項:所含字母相同,并且相同字母的指數也相同的單項式是同類項.
2.合并同類項法則:系數相加,字母與字母的指數不變.
3.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.
4.整式的加減:整式的加減,實際上是在去括號的基礎上,把多項式的同類項合并.
5.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結果一般應該進行升冪(或降冪)排列.
八、:一元一次方程
1.等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”!
2.等式的性質:
等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;
等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.
3.方程:含未知數的等式,叫方程.
4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:“方程的解就能代入”!
5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1.
6.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程.
7.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).
8.一元一次方程的最簡形式:ax=b(x是未知數,a、b是已知數,且a≠0).
9.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數化為1……(檢驗方程的解).
九、:列一元一次方程解應用題。
(1)讀題分析法:…………多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程.
(2)畫圖分析法:…………多用于“行程問題”
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.
十、:.列方程解應用題的常用公式。
初一數學上冊知識點整式的加減
1.單項式:表示數字或字母乘積的式子,單獨的一個數字或字母也叫單項式。
2.單項式的系數與次數:單項式中的數字因數,稱單項式的系數;
單項式中所有字母指數的和,叫單項式的次數.
3.多項式:幾個單項式的和叫多項式.
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數項的次數叫多項式的次數;
5..
6.同類項:所含字母相同,并且相同字母的指數也相同的單項式是同類項.
7.合并同類項法則:系數相加,字母與字母的指數不變.
8.去(添)括號法則:
去(添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號.
9.整式的加減:一找:(劃線);二“+”(務必用+號開始合并)三合:(合并)
10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).
一元一次方程
1.等式:用“=”號連接而成的式子叫等式.
2.等式的性質:
等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;
等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式.
3.方程:含未知數的等式,叫方程.
4.方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:“方程的解就能代入”!
5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據是等式性質1.
6.一元一次方程:只含有一個未知數,并且未知數的次數是1,并且含未知數項的系數不是零的整式方程是一元一次方程.
7.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0).
8.一元一次方程解法的一般步驟:
化簡方程----------分數基本性質
去分母----------同乘(不漏乘)最簡公分母
去括號----------注意符號變化
移項----------變號(留下靠前)
合并同類項--------合并后符號
系數化為1---------除前面
10.列一元一次方程解應用題:
(1)讀題分析法:…………多用于“和,差,倍,分問題”
仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-----”,利用這些關鍵字列出文字等式,并且據題意設出未知數,最后利用題目中的量與量的關系填入代數式,得到方程.
(2)畫圖分析法:…………多用于“行程問題”
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據,最后利用量與量之間的關系(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎.
11.列方程解應用題的常用公式:
(1)行程問題:距離=速度?時間;
(2)工程問題:工作量=工效?工時;
工程問題常用等量關系:先做的+后做的=完成量
(3)順水逆水問題:
順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;水流速度=(順水速度-逆水速度)÷2
順水逆水問題常用等量關系:順水路程=逆水路程
Middle School Students wrong title set to establish
Ning Hui-qing
【Abstract】Successful examples to prove the establishment wrong title set is a way to improve the efficiency of learning, is the students good way to learn the ways, through the collection, classification, use of the wrong title set, students can find out the source of mistakes, and be targetedcorrections, to consolidate and deepen the knowledge.
【Key words】High school students the wrong title set collection; Established; Using
學習初中數學時,我們經常有這樣的體會:上課聽老師講課聽得懂,但到自己練習時,總感到困難重重;在做作業時,許多題目老師講過了、自己做過了、甚至考過了,卻無從入手;在測試或考試時,同學們都會有做錯的題目,也許下次考試還是會錯。多年的教學實踐中我發現,每次考試過后,學生們總會有不少題目做錯。而在這些錯題的背后,往往隱藏了學習過程中所產生的漏洞。我們往往會處理一些直觀的或是熟悉的數學問題,而對那些不具體的、抽象的數學問題常常不能抓住其本質,不能轉化為已知的數學模型或過程去分析解決。這主要是由于我們知識結構的殘缺和認識上的盲點造成的,平時做習題很少進行反思,做錯時只就題改題,
不能對知識系統和數學方法進行歸納。如何學會解題回顧和反思,從而提高學習的效率呢?其實整理錯題集不失為一劑良策。以下就是關于建立數學錯題集的成功的例子
① 黑龍江07年高考狀元禹奇鋒(總分667分):他剛進高一時癡迷于網絡,成績一度滑落至全年級倒數,意識到問題的嚴重性后,他主動遠離了網絡,全身心投入到學習中。學習上緊跟老師的思路,認真的投入,以及勤于回頭看自己過去的失誤。根據平時犯的錯誤整理出來的“錯題本”是他的最愛。復習中經常翻看這個小本子,對于他改正錯誤、避免失誤起到了非常重要的作用。
② 河南07年高考狀元馬冰一(總分667分):他高考數學考了滿分,他說:”他的絕招是他那本快被磨破的“易錯題寶典”,里面密密麻麻地記載了各種類型的數學考題,記錄時間從高一到高三,這是3年里數學考試中的所有錯題,他用星號標出了犯錯次數和難度,凡是錯過兩次的題目,就是我考試前復習的重點。我建議高中生平時做題時,要善于分析、思考和總結,探索新方法,積極主動地追尋題目和答案之間必然的聯系,把題做活。
③一個高考數學得了139分的人在其博客里說,我學數學的方法是,多做題,然后把做錯的題目單獨拿個本子記下來,標記出哪里不懂,錯在什么地方了,
搞一個專門的錯題集,以后經常看看自己做錯的題目,避免錯誤重犯。
④《思維與智慧》雜志登載的楊傳良的文章:別浪費失敗
中考數學滿分是120分的,我以118分的成績位于全縣第一。老師讓我談談成功經驗時,我拿出了16本錯題集。我的錯題集讓老師大為贊賞。那16本錯題集囊括了初中三年我所有出錯的數學題。初一數學四本,初二數學四本,初三數學二本。其余的六本是綜合整理了三年中容易出錯的數學題。易錯題有從作業本上摘錄的,有從考卷中摘取的,還有的是從課外書上摘錄下來的。第11本、第12本錯題集最厚,那是分門別類集合了初中三年中改錯后又反復出錯的題目。第13本就開始變薄了,到第16本時就只剩下6道題,這6道題全是課外書上的,復雜而有難度,可以說是初中數學中的六座高峰。在考場上,面對四張數學考卷,我體會到“讀書破萬卷,下筆如有神”的。那些題目就像是老朋友一樣向我熱情地微笑,我從頭到尾沒遇到一個攔路虎。我知道這次考試非常成功。三年來我從書本中反復暢游,多少道易錯的難題都讓我做熟了。我在一本書上看到過茅以升的故事,他的數學成績特別好。據說他成功的原因之一也是建立了多本錯題集。
1. 明確建立“錯題集”的目的
1.1 建立“數學錯題集”,避免學生反復出錯